

## Week 11: System Analysis in the Frequency Domain (Part II)

Mahmut Selman Sakar

Institute of Mechanical Engineering, EPFL

---

# Sinusoidal Transfer Function

---

- For sinusoidal inputs

$$G(j\omega) = |G(j\omega)|e^{j\phi}$$

$$|G(j\omega)| = \left| \frac{Y(j\omega)}{U(j\omega)} \right| = \begin{array}{l} \text{amplitude ratio of the output sinusoid to the} \\ \text{input sinusoid} \end{array}$$

$$\angle G(j\omega) = \angle \frac{Y(j\omega)}{U(j\omega)} = \begin{array}{l} \text{phase shift of the output sinusoid with respect} \\ \text{to the input sinusoid} \end{array}$$

- First Order System

$$|G(j\omega)| = \frac{K}{\sqrt{1 + \tau^2 \omega^2}}$$

$$\angle G(j\omega) = \varphi = -\arctan(\tau\omega)$$

- Second Order System

$$|G(j\omega)| = \sqrt{R^2 + I^2}$$

$$\angle G(j\omega) = \varphi = \begin{cases} \arctan\left(\frac{I}{R}\right) & R > 0 \\ \arctan\left(\frac{I}{R}\right) \pm \pi & R \leq 0 \end{cases}$$

# Second Order Systems

---

- **Resonant Frequency**

- Frequency at which amplitude is a maximum

$$\frac{d}{d\omega} |G(j\omega)| = 0 \quad \omega_r = \omega_0 \sqrt{1 - 2\zeta^2} \quad 0 \leq \zeta \leq 1/\sqrt{2}$$

- As the damping ratio approaches zero, the resonant frequency approaches natural frequency.
- Resonant frequency is lower than damped natural frequency, which is exhibited in the transient response
- For  $0.707 < \zeta$  there is no resonant peak, magnitude decreases monotonically with increasing frequency
- Step response is oscillatory but well-damped and hardly perceptible

# Second Order Systems

---

- **Magnitude of the Resonant Peak**

$$\omega_r = \omega_0 \sqrt{1 - 2\zeta^2} \quad 0 \leq \zeta \leq 1/\sqrt{2}$$

$$M_r = |G(jw)|_{max} = |G(j\omega_r)| = \frac{K}{2\zeta\sqrt{1 - \zeta^2}}$$

$$\angle G(j\omega) = \varphi(\omega_r) = -\arctan\left(\frac{\sqrt{1 - 2\zeta^2}}{\zeta}\right)$$

- As the damping ratio approaches zero, the magnitude approaches infinity.

# Bode Form of the Transfer Function

---

- Components of transfer functions

1. *constants* (gain)

2.  $(j\omega)^n$

3.  $(j\omega\tau + 1)^{\pm 1}$

4.  $\left[ \left( \frac{j\omega}{\omega_0} \right)^2 + 2\zeta \frac{j\omega}{\omega_0} + 1 \right]^{\pm 1}$

- Break points (corner frequency)

2.  $\omega_b = 1/\tau$

3.  $\omega_b = \omega_0$

# Lecture Overview

---

- Higher order transfer functions and Delay
- Magnitude in Decibels
- Filter design

# Bode Form of the Transfer Function

---

- Manipulate transfer function into Bode form
- Extend the low frequency asymptote until the first break point. Then step the slope by  $\pm 1$  or  $\pm 2$ , depending on whether the break point is from a first order or second order term in the numerator or denominator
- Continue through all break points in ascending order
- Approximate magnitude curve is increased from the asymptote value by a factor of 1.4 at first order numerator break point and decreased by a factor of 0.707 at first-order denominator break points
- At second-order break points, find resonant peak
  
- Plot low frequency asymptote of the phase curve  $\varphi = n \times 90^\circ$
- Approximate phase curve changes by  $\pm 90^\circ$  or  $\pm 180^\circ$  at each break point in ascending order. Sign depends on location.
- Graphically add each phase curve

# Higher Order Systems

---

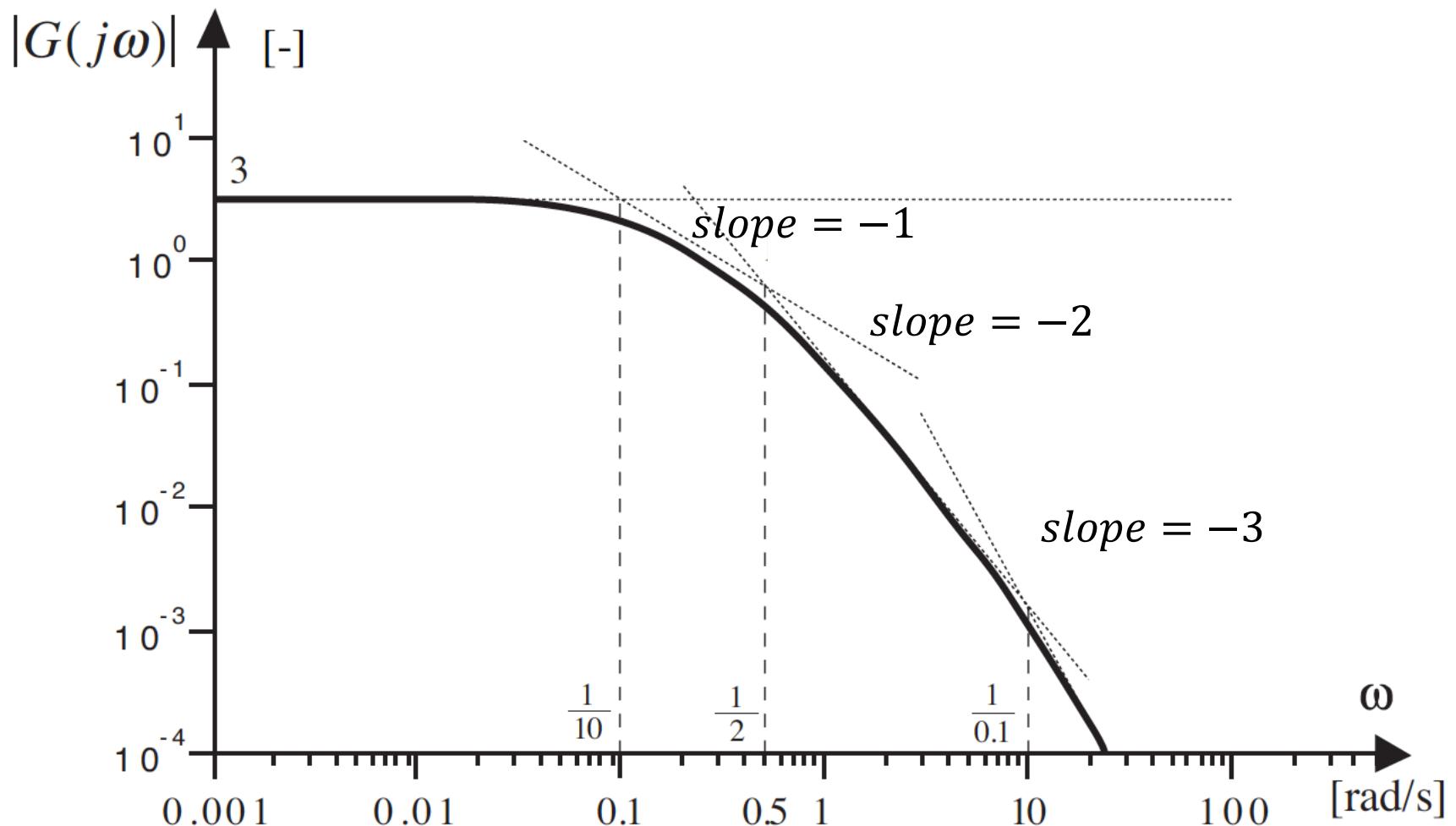
$$G(s) = \frac{3}{(10s + 1)(2s + 1)(0,1s + 1)}$$

$$|G(j\omega)| = \frac{3}{\sqrt{1 + (10\omega)^2} \sqrt{1 + (2\omega)^2} \sqrt{1 + (0,1\omega)^2}}$$

$$\varphi = \arg[G(j\omega)] = -\arctan(10\omega) - \arctan(2\omega) - \arctan(0,1\omega)$$

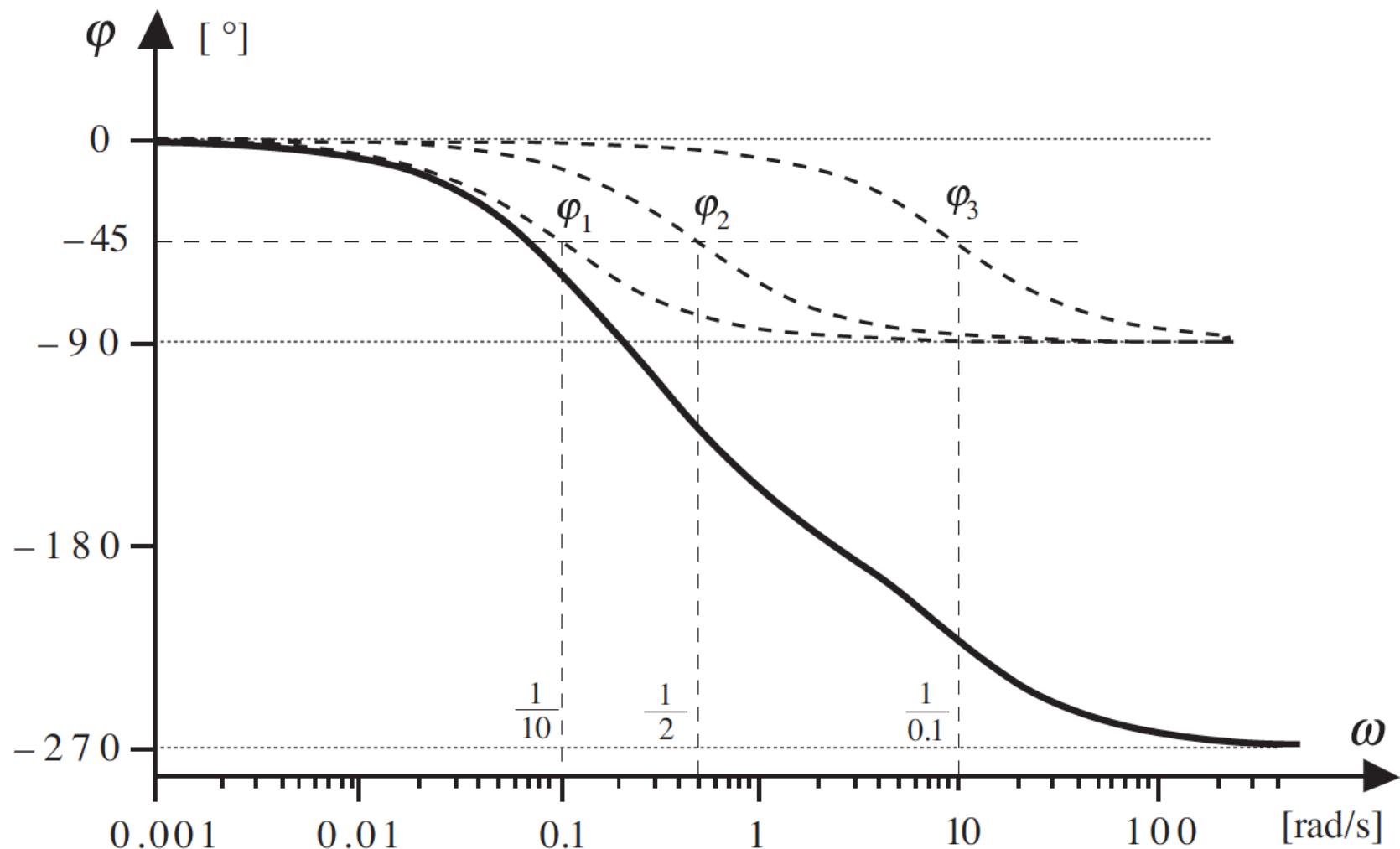
# Higher Order Systems

---



# Higher Order Systems

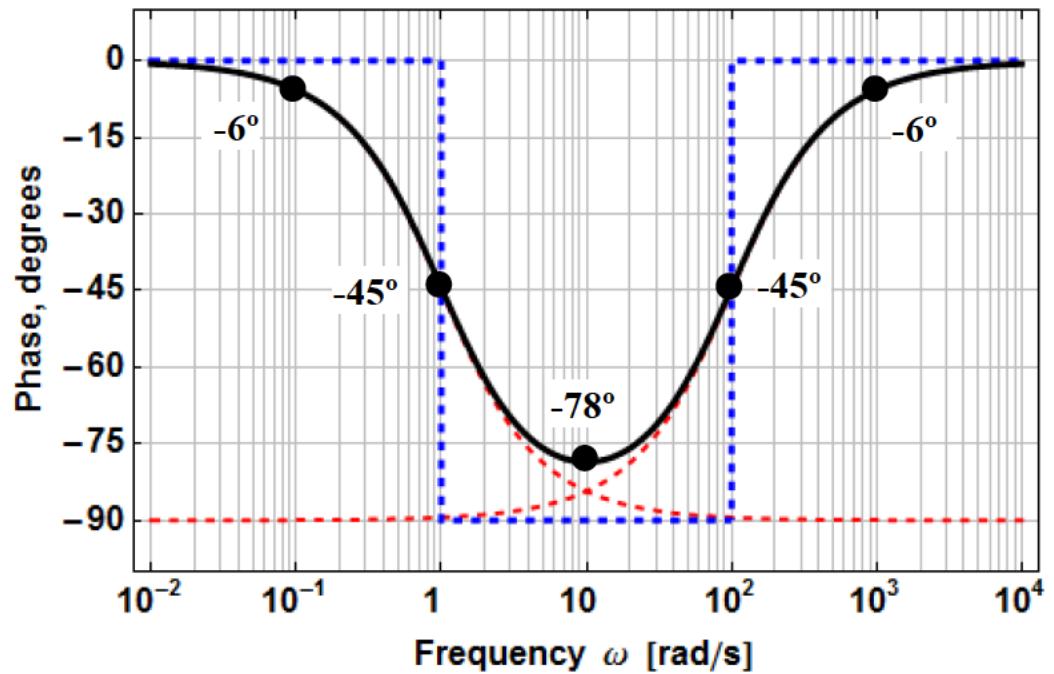
---



# Correction for Phase Angle

---

$$G(s) = 10 \frac{(s + 100)}{(s + 1)}$$



# Systems with Zeros

---

$$G_1(s) = \frac{2s+1}{5s+1}$$

$$G_2(s) = \frac{-2s+1}{5s+1}$$

$$|G(j\omega)| = \frac{\sqrt{1 + (2\omega)^2}}{\sqrt{1 + (5\omega)^2}}$$

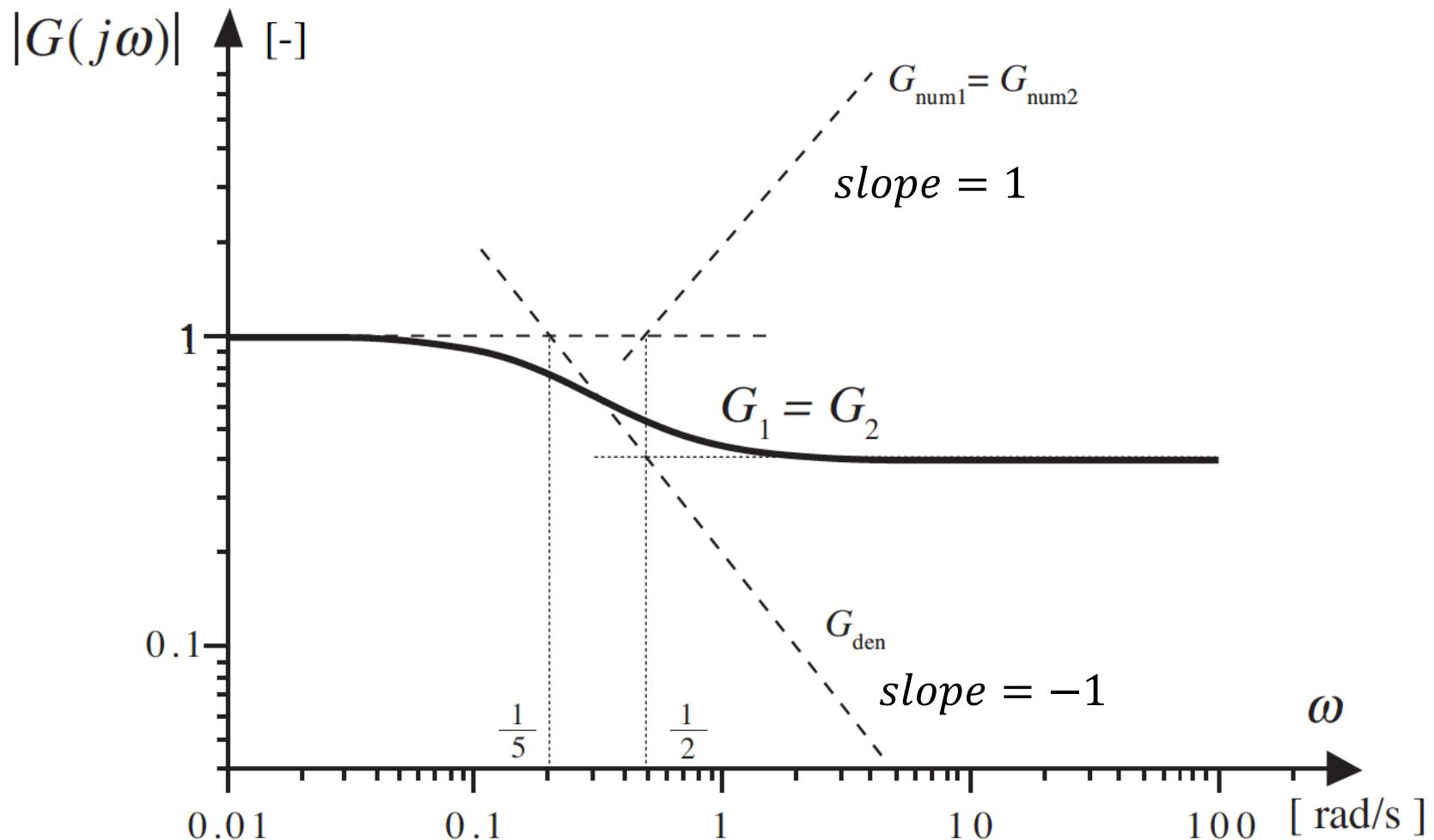
$$|G(j\omega)| = \frac{\sqrt{1 + (-2\omega)^2}}{\sqrt{1 + (5\omega)^2}}$$

$$\varphi_1 = \arctan(2\omega) - \arctan(5\omega)$$

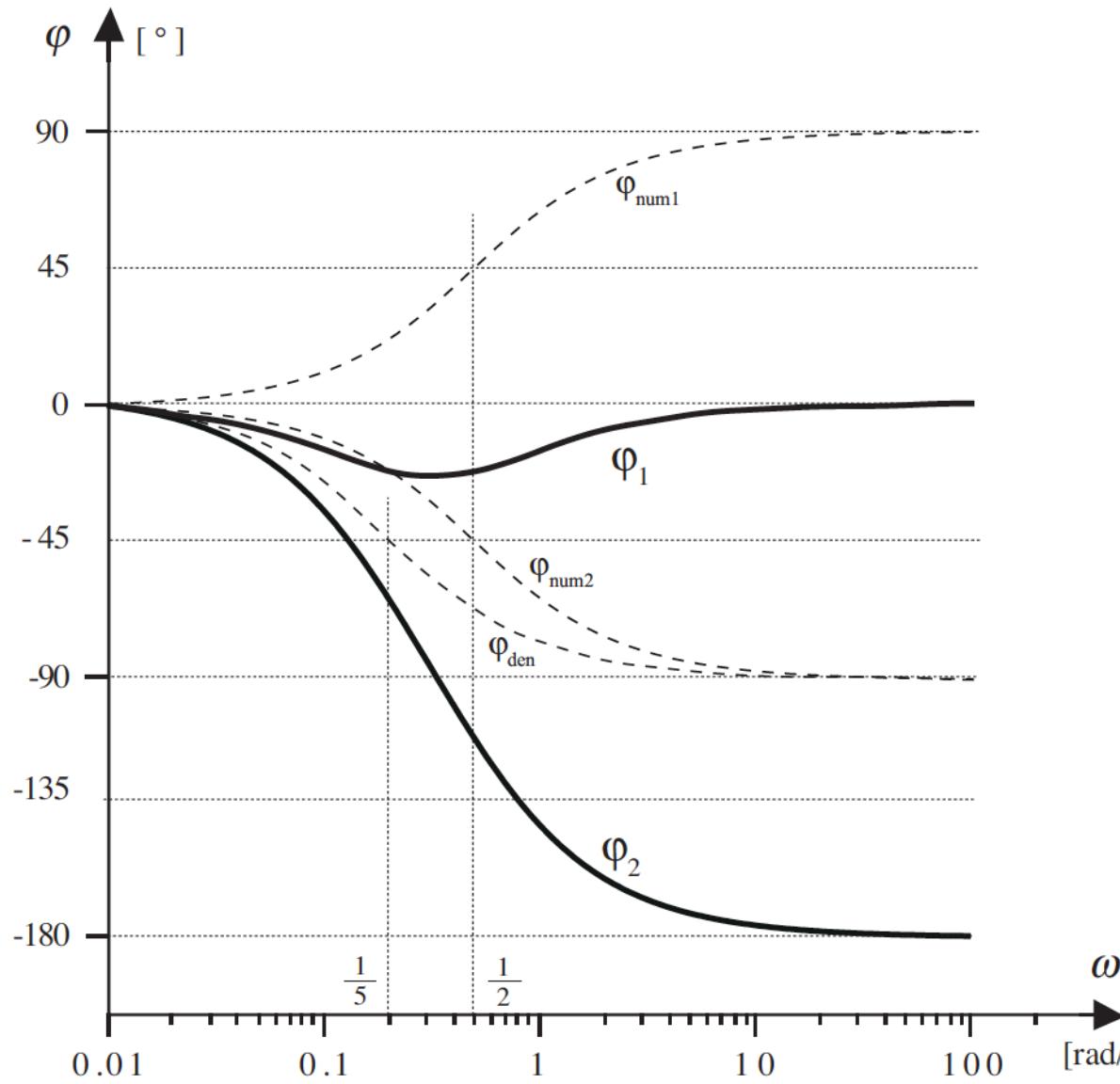
$$\varphi_2 = -\arctan(2\omega) - \arctan(5\omega)$$

# Systems with Zeros

---



# Systems with Zeros



# Systems with Zeros

---

$$G_1(s) = \frac{2s + 1}{5s + 1}$$

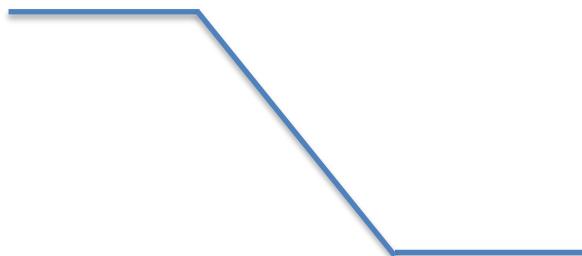
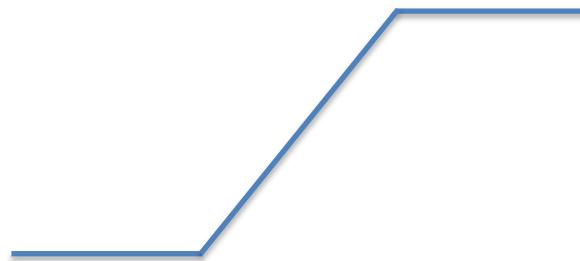
$$G_2(s) = \frac{5s + 1}{2s + 1}$$

$$|G(j\omega)| = \frac{\sqrt{1 + (2\omega)^2}}{\sqrt{1 + (5\omega)^2}}$$

$$|G(j\omega)| = \frac{\sqrt{1 + (5\omega)^2}}{\sqrt{1 + (2\omega)^2}}$$

$$\varphi_1 = \arctan(2\omega) - \arctan(5\omega)$$

$$\varphi_2 = -\arctan(2\omega) + \arctan(5\omega)$$



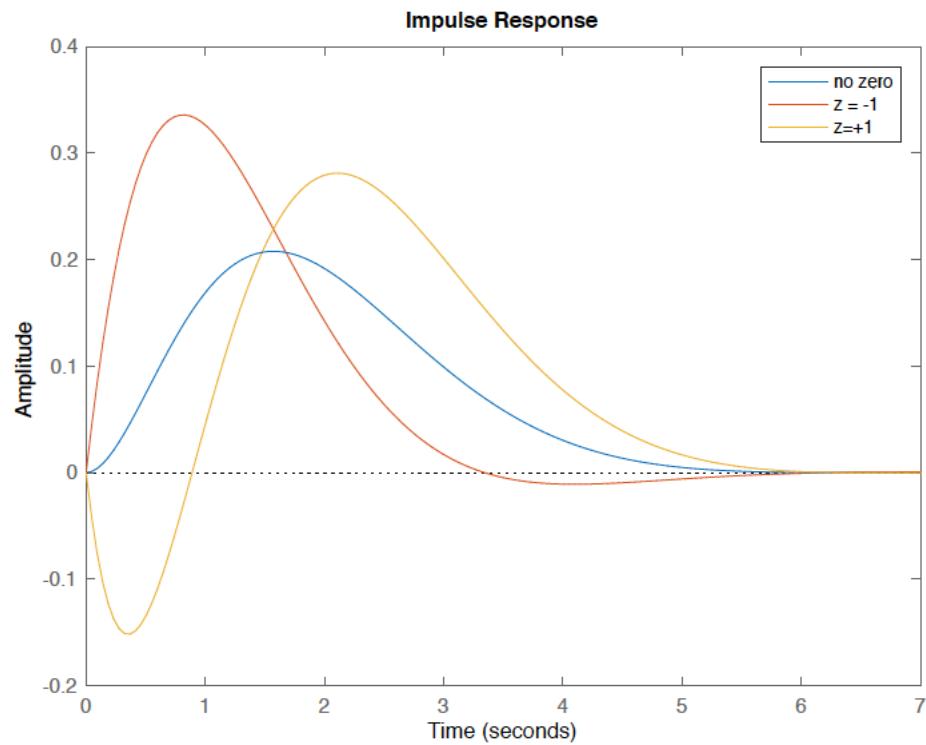
# Non-minimum phase zeros

---

- Minimum phase systems are with
  - Transfer functions having neither poles nor zeros in the right-half s-plane
- Non-minimum phase systems have
  - Transfer functions with poles and/or zeros in the right-half s-plane
- Poles with positive real part result in unstable system (the output diverges over time)
- The stability of the system is preserved when zeros have positive real part
- A zero in the right half plane means a negative derivative action – the output will tend to move in the wrong direction initially
  - Nonminimum phase zeros make the system slow in response because of the faulty behavior at the start of the response
  - Excessive phase lag should be avoided

# Non-minimum phase zeros

---



# Systems with Delay

---



$$y(t) = u(t - \theta) \xrightarrow{\mathcal{L}} Y(s) = \exp(-\theta s) U(s)$$

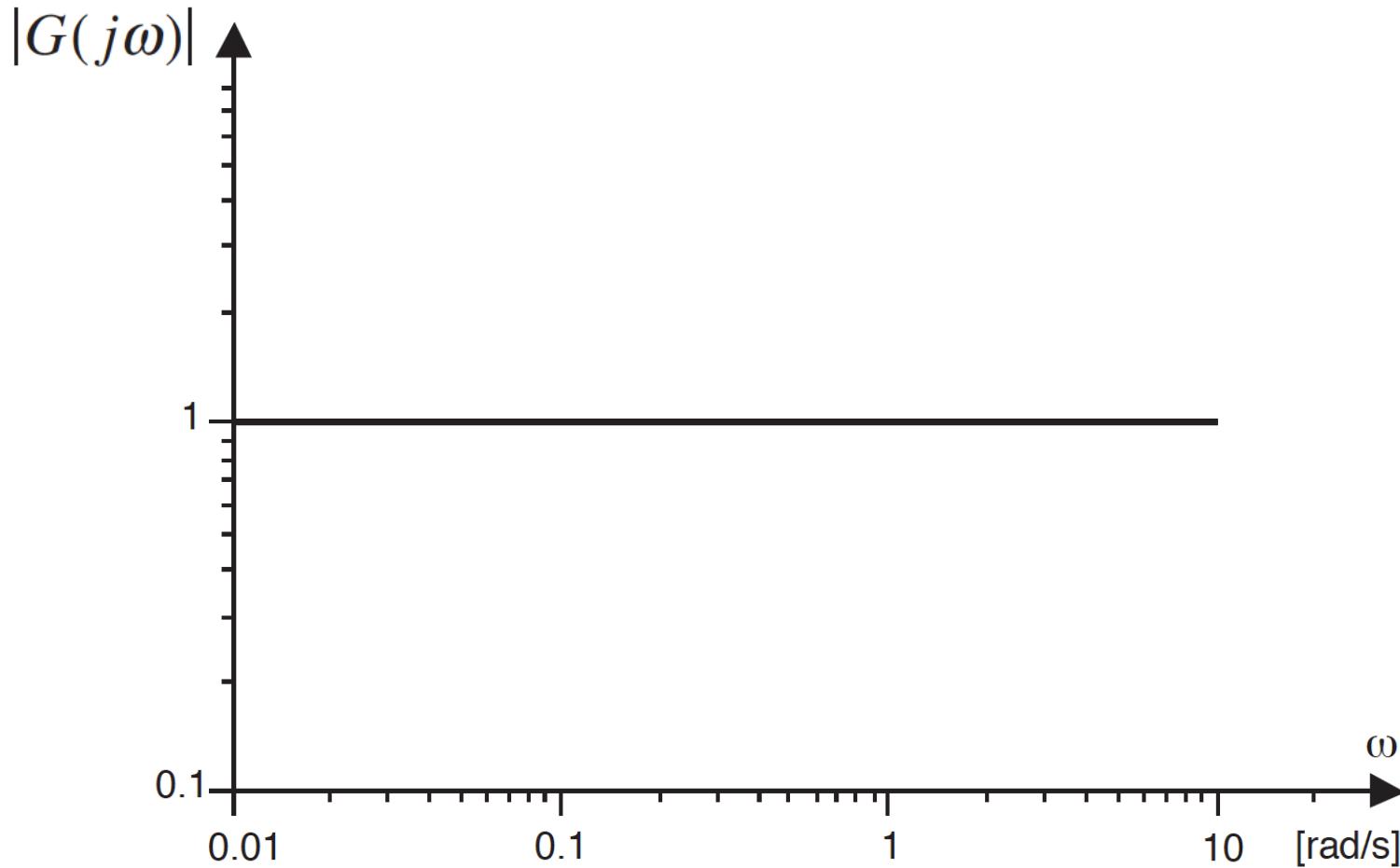
$$G(s) = \frac{Y(s)}{U(s)} = \exp(-\theta s)$$

$$|G(j\omega)| = |\exp(-j\theta\omega)| = 1$$

$$\varphi = \arg[\exp(-j\theta\omega)] = -\theta\omega$$

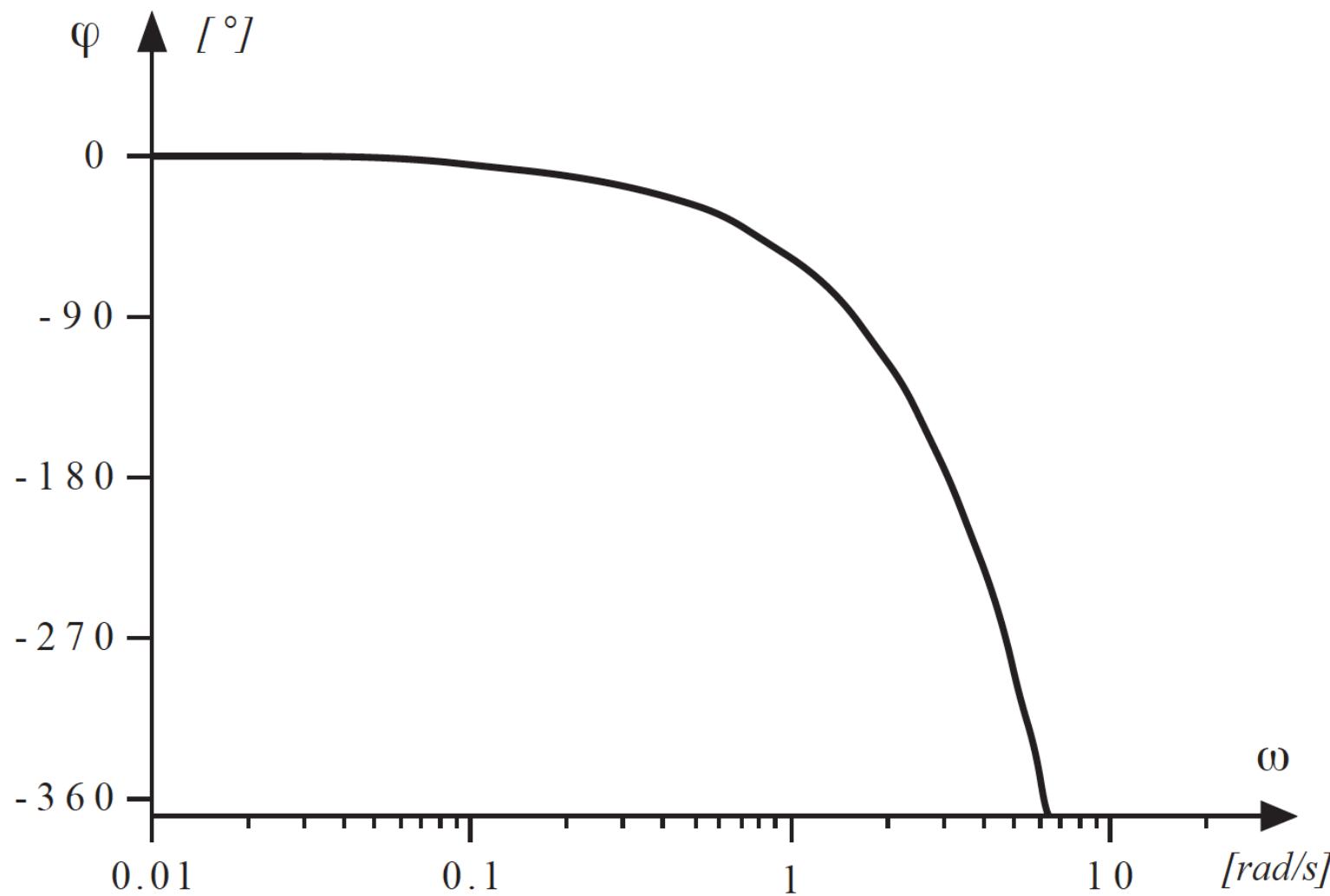
# Systems with Delay

---



# Systems with Delay

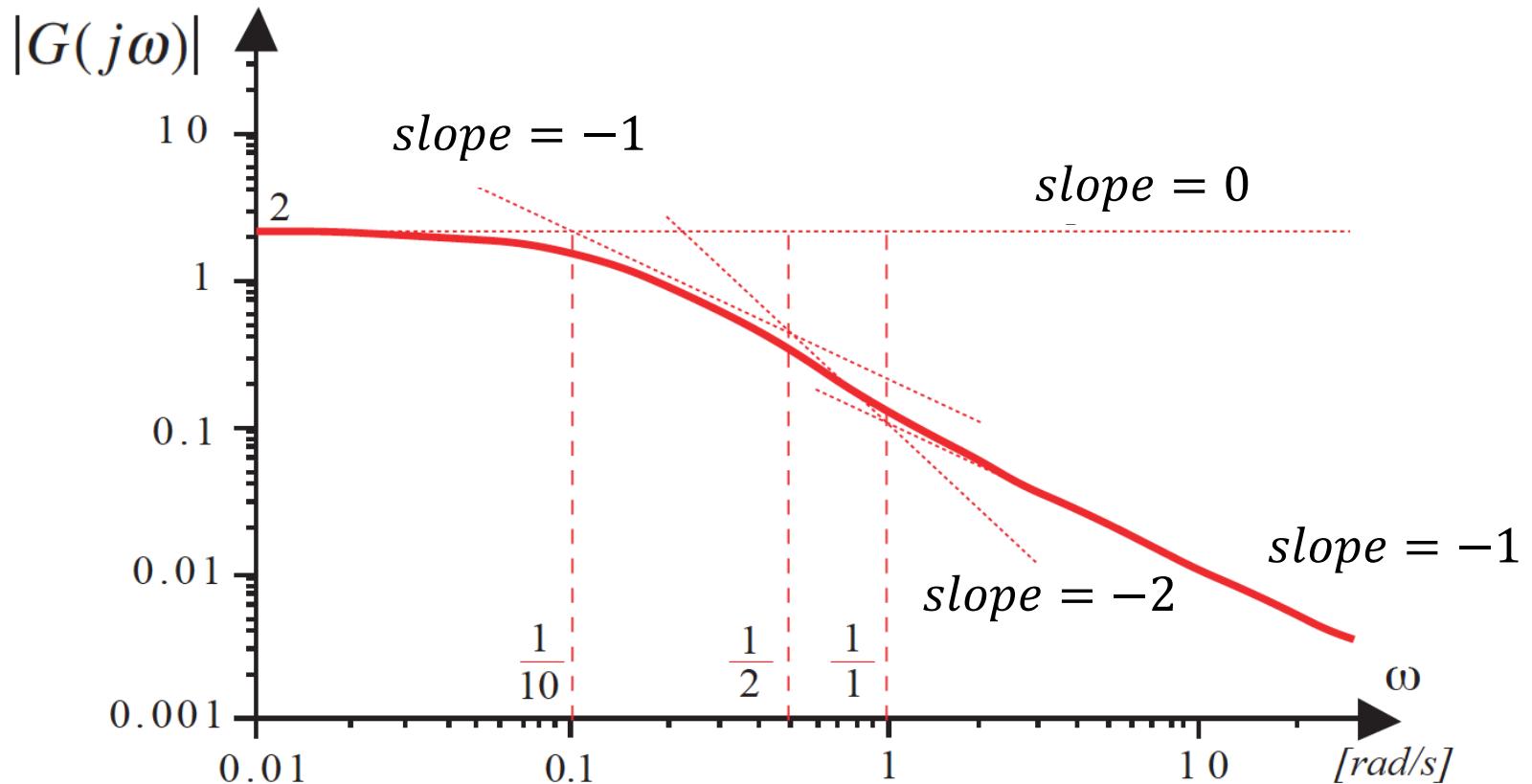
---



## Example

$$G(s) = \frac{2(s+1)\exp(-s)}{(10s+1)(2s+1)}$$

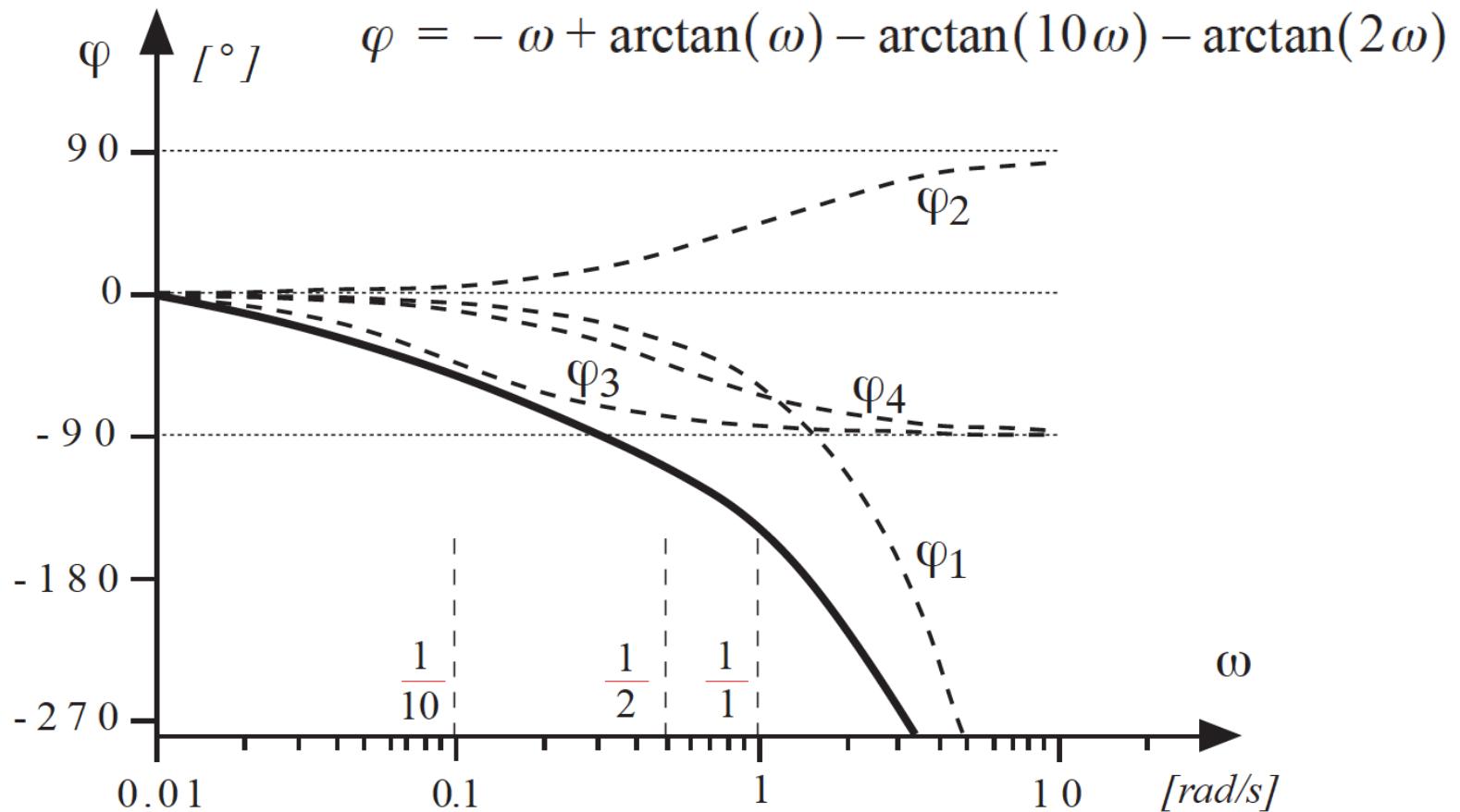
$$|G(j\omega)| = 2 \frac{\sqrt{1 + \omega^2}}{\sqrt{1 + (10\omega)^2} \sqrt{1 + (2\omega)^2}}$$



# Systems with Delay

---

$$G(s) = \frac{2(s+1)\exp(-s)}{(10s+1)(2s+1)}$$



# Bode Form of the Transfer Function

---

- Components of transfer functions

1. *constants* (gain)

2.  $(j\omega)^n$

3.  $(j\omega\tau + 1)^{\pm 1}$

$$4. \left[ \left( \frac{j\omega}{\omega_0} \right)^2 + 2\zeta \frac{j\omega}{\omega_0} + 1 \right]^{\pm 1}$$

5.  $e^{-j\omega\tau}$  (delay)

- Break points (corner frequency)

$$2. \omega_b = 1/\tau$$

$$3. \omega_b = \omega_0$$

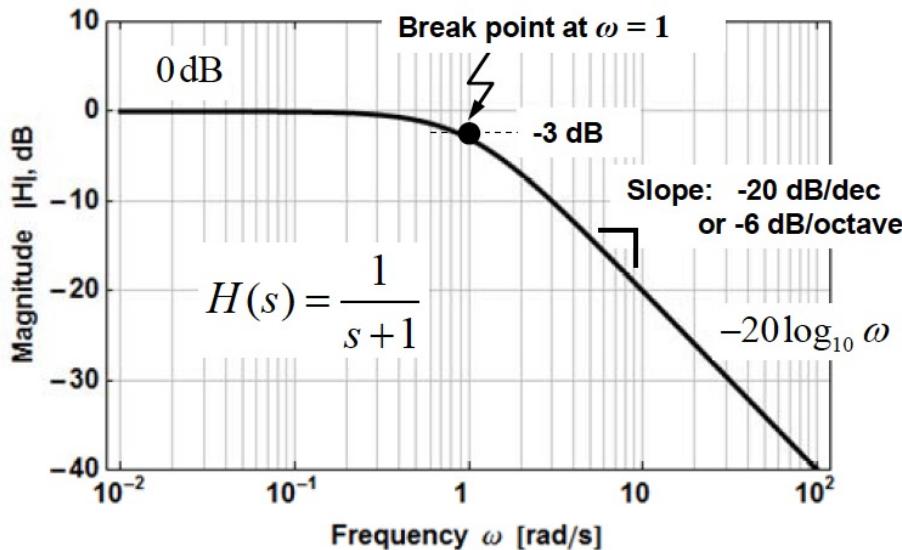
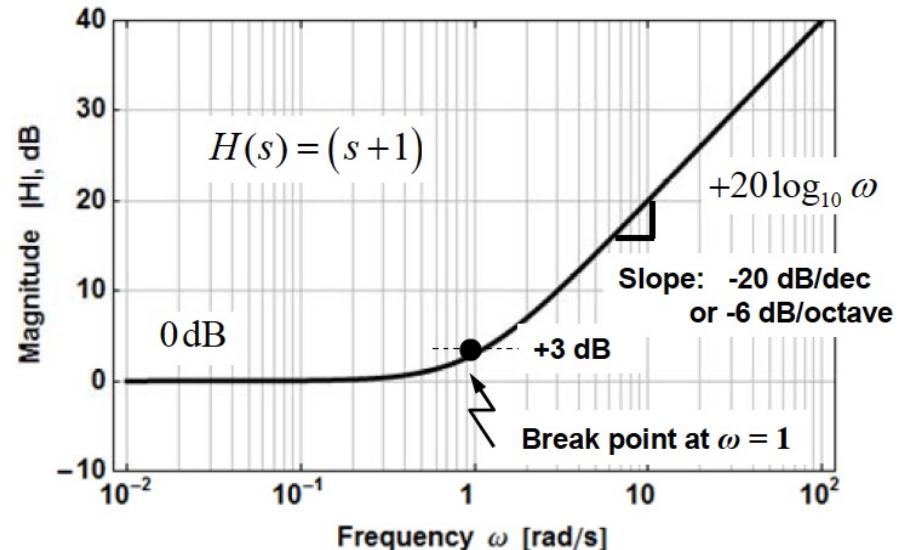
- Bandwidth and Cut-off frequency

# Decibel (power dB)

- In communications, it is standard to measure the power gain in decibels (dB)
- Decibels vs  $\log(\omega)$  as a semi log plot

## Magnitude in dB

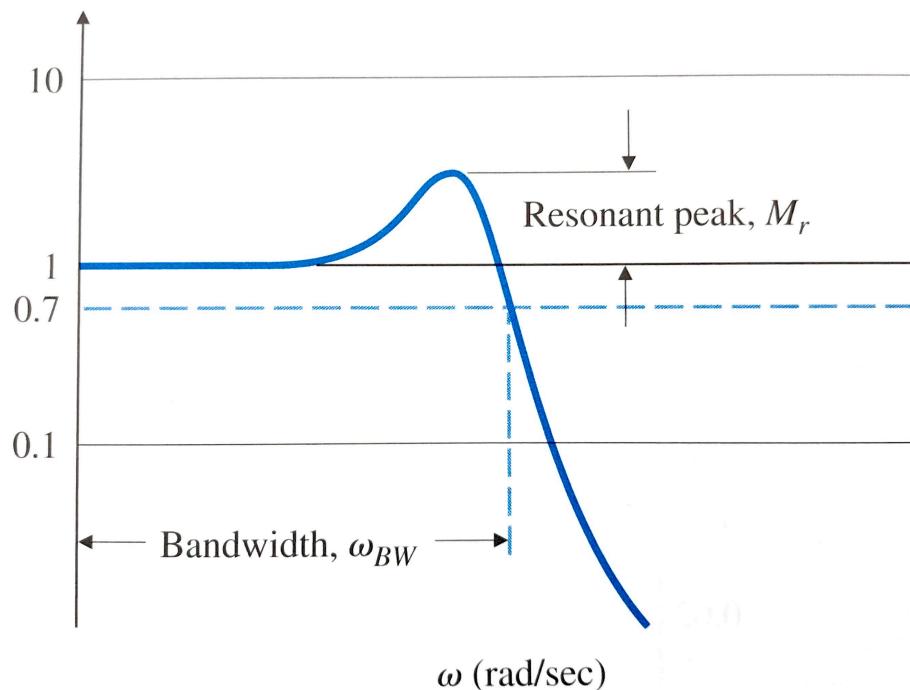
$$|G(j\omega)|_{dB} = 20 \log_{10} |G(j\omega)|$$



# Performance Specifications

---

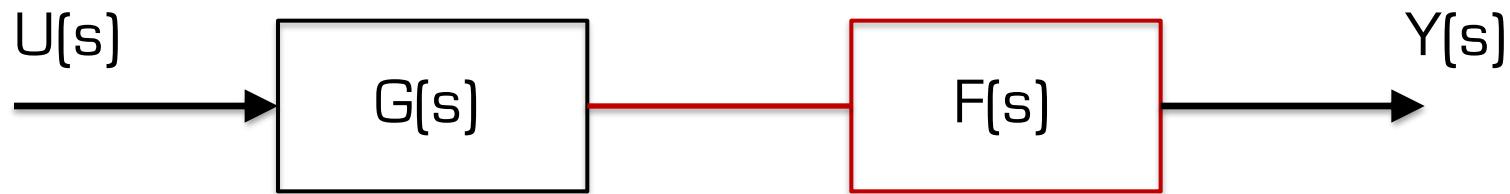
- Speed of transient response
  - As bandwidth increases, the rise time of the step response will decrease
  - Bandwidth is proportional to the speed of the response
- As resonant peak increases in magnitude, the percent overshoot increases



# Filter Design

---

- The objective is to modify certain characteristics of system response
  - Magnitude and phase at a certain frequency
  - **Low-pass filter**: cut unwanted high-frequency components
  - **High-pass filter**: cut unwanted low-frequency components
  - **Band-pass** and **notch filter**: attenuate specific frequencies
  - **All-pass filter** (phasor effect): only change phase

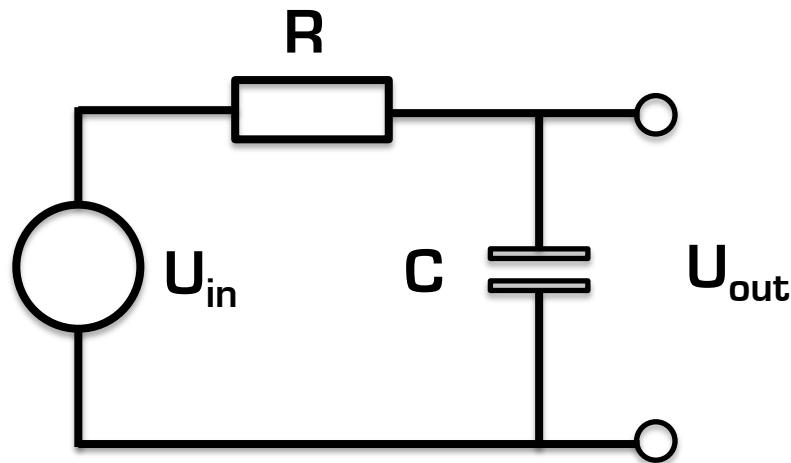


# Low-Pass Filter (or Amplifier)

---

- Amplifies signals below a cut-off frequency, including DC gain
- $\omega_H$  = upper cutoff frequency

$$F(s) = K \frac{\omega_H}{(s + \omega_H)} \quad \varphi = -\arctan\left(\frac{\omega}{\omega_H}\right)$$

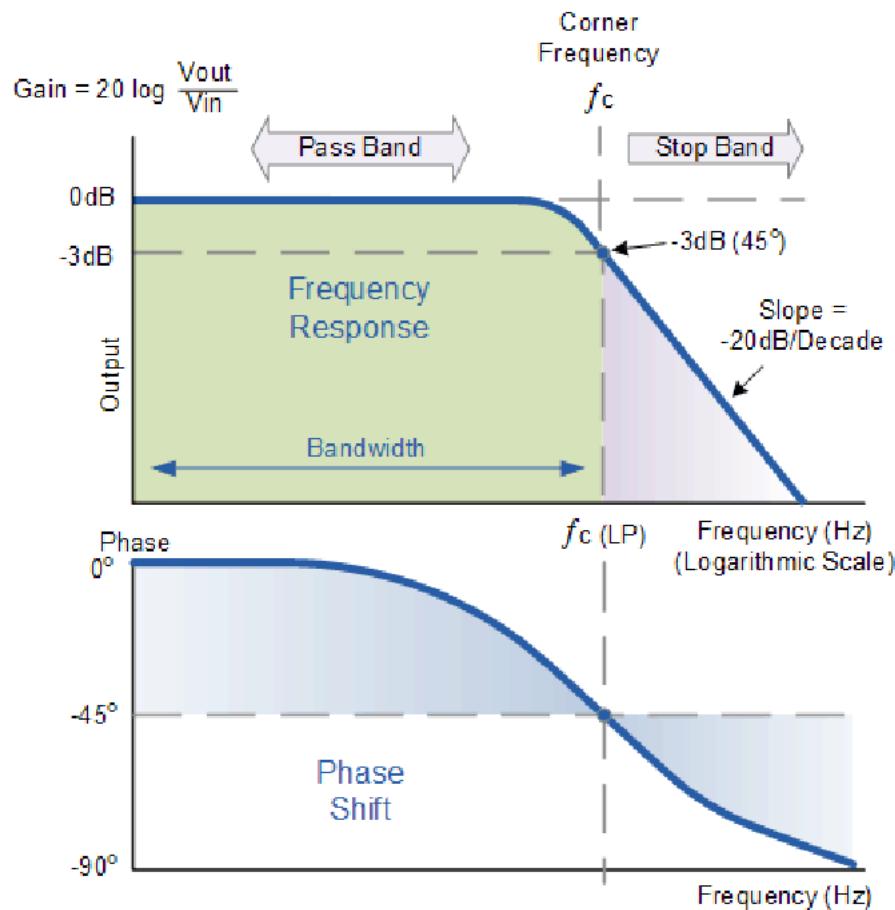


# Low-Pass Filter (or Amplifier)

- Amplifies signals below a cut-off frequency, including DC gain
- $\omega_H$  = upper cutoff frequency

$$F(s) = K \frac{\omega_H}{(s + \omega_H)}$$

$$\varphi = -\arctan\left(\frac{\omega}{\omega_H}\right)$$

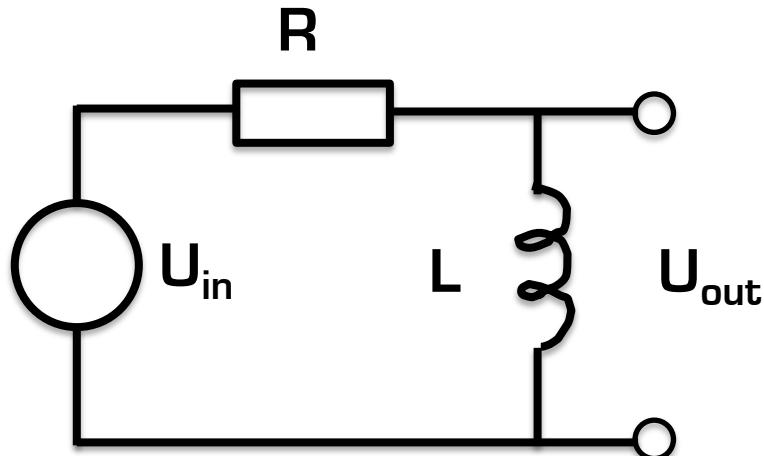


# High-Pass Filter (or Amplifier)

---

- A single pole with a zero at the origin
- $\omega_L$  = lower cutoff frequency

$$F(s) = K \frac{s}{(s + \omega_L)} \quad \varphi = 90^\circ - \arctan\left(\frac{\omega}{\omega_L}\right)$$

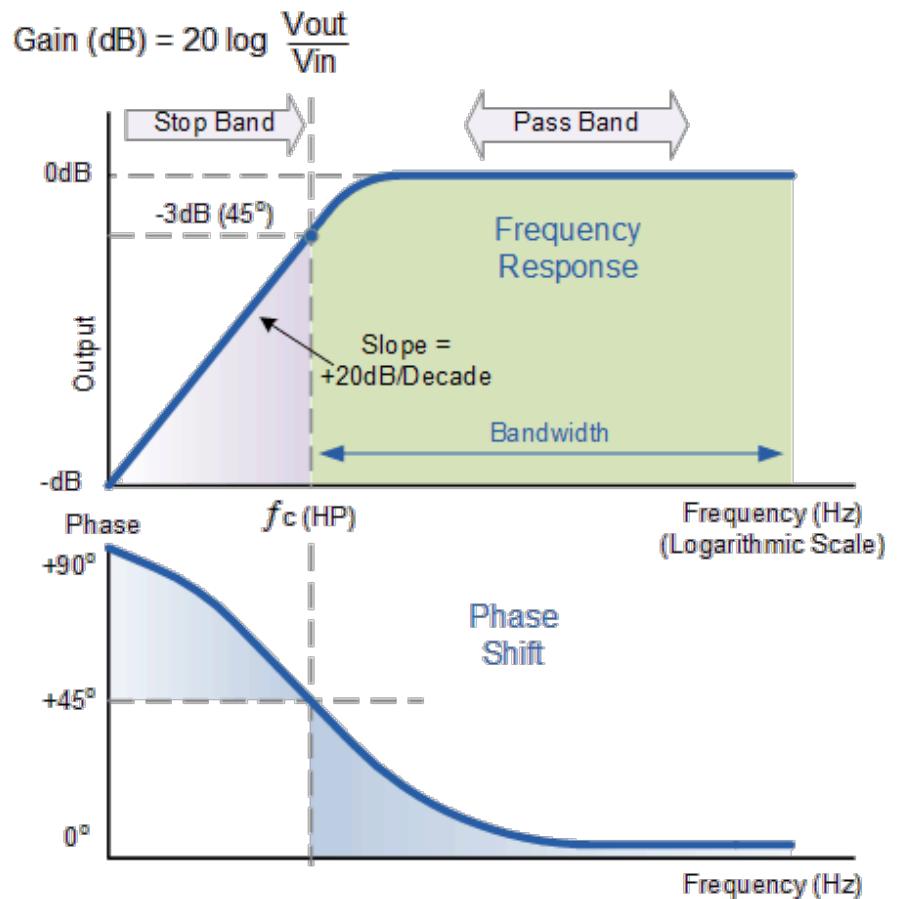


# High-Pass Filter (or Amplifier)

- A single pole with a zero at the origin
- $\omega_L$  = lower cutoff frequency

$$F(s) = K \frac{s}{(s + \omega_L)}$$

$$\varphi = 90^\circ - \arctan\left(\frac{\omega}{\omega_L}\right)$$



# High-Q Band-Pass Amplifier and Notch Filter

---

- Band-pass: Combination of high-pass and low-pass characteristics

$$F(s) = K \frac{s\omega_H}{(s + \omega_L)(s + \omega_H)}$$

- For small bandwidth ( $\omega_H - \omega_L$ ) and high quality factor (Q), poles must be complex

$$F(s) = K \frac{s \frac{\omega_c}{Q}}{s^2 + s \frac{\omega_c}{Q} + \omega_c^2} \quad \varphi = 90^\circ - \arctan\left(\frac{1}{Q} \frac{\omega\omega_c}{\omega_c^2 - \omega^2}\right)$$

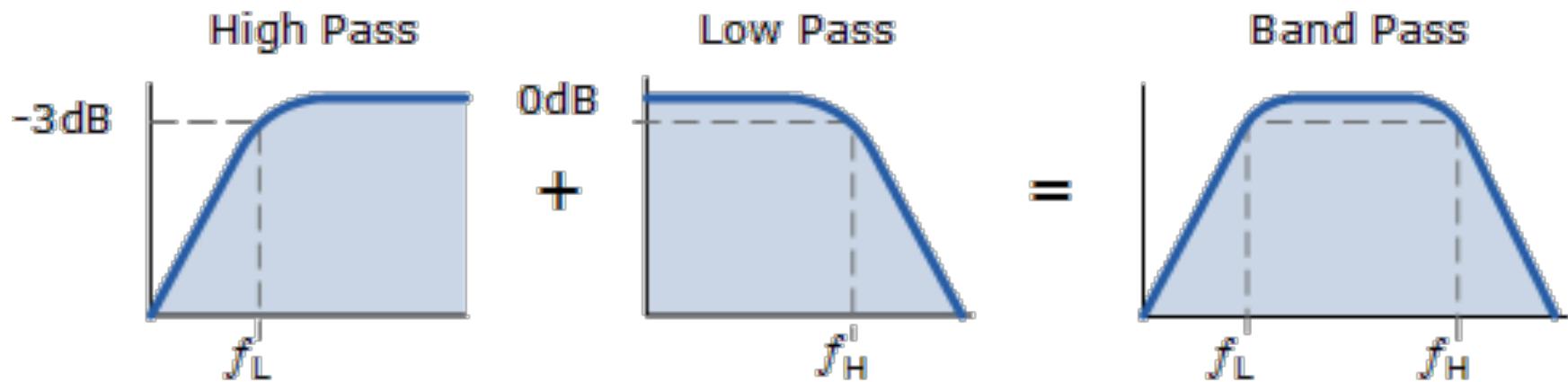
- Band rejection (Notch) filter

$$F(s) = K \frac{s^2 + \omega_c^2}{s^2 + s \frac{\omega_c}{Q} + \omega_c^2}$$

# Band-Pass Filter

- Band-pass: Combination of high-pass and low-pass characteristics

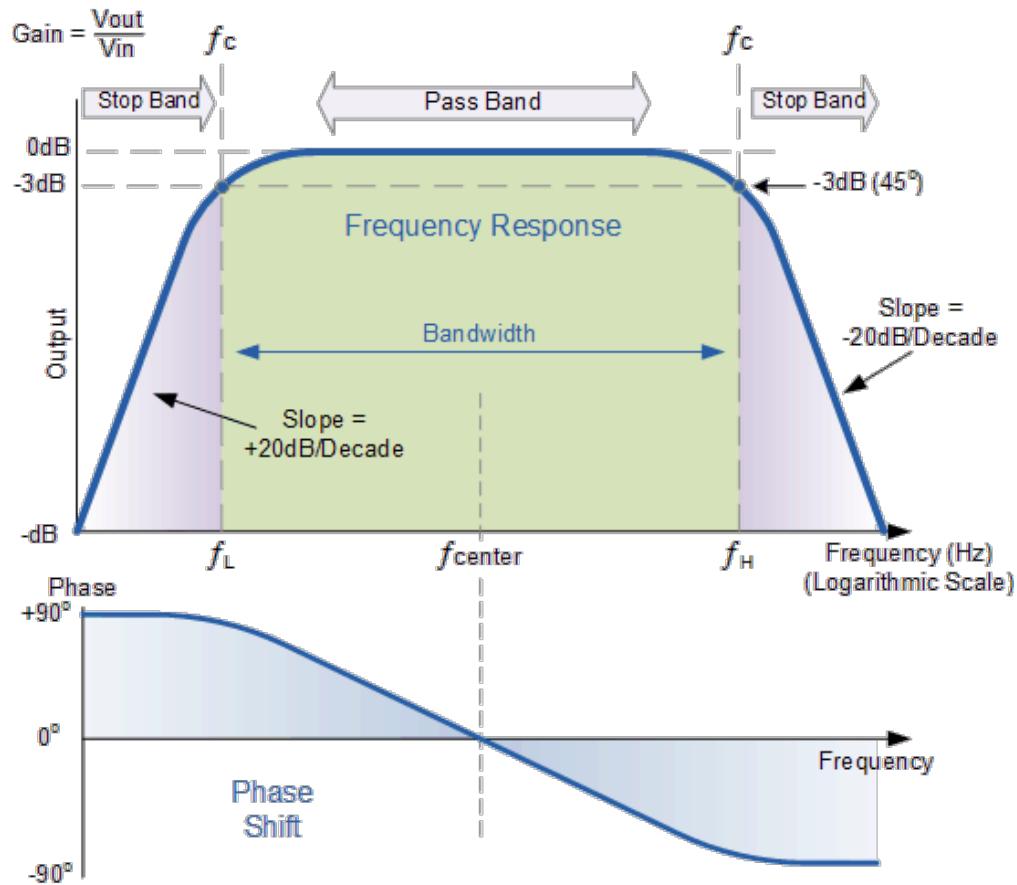
$$F(s) = K \frac{s\omega_H}{(s + \omega_L)(s + \omega_H)}$$



# Band-Pass Filter

- Band-pass: Combination of high-pass and low-pass characteristics

$$F(s) = K \frac{s\omega_H}{(s + \omega_L)(s + \omega_H)}$$



# All-pass Function

---

- Uniform magnitude response at all frequencies
- Can be used to tailor phase characteristics of the system

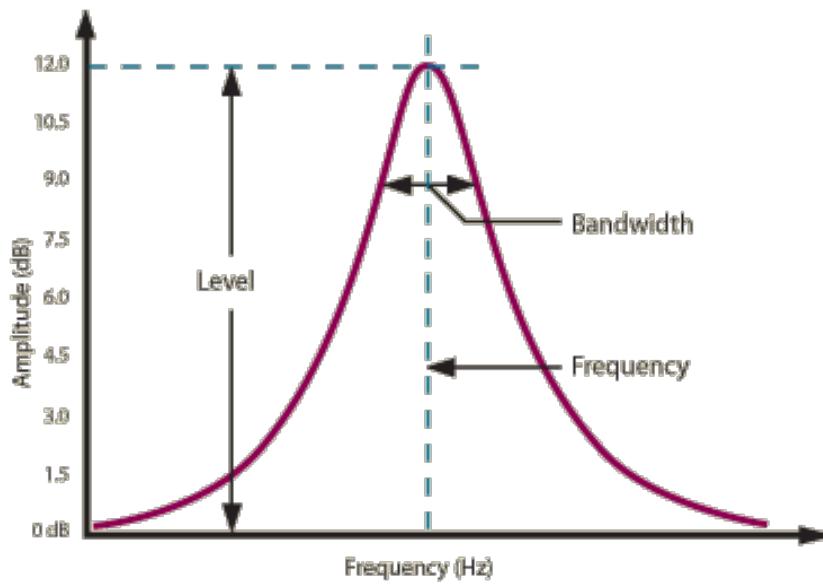
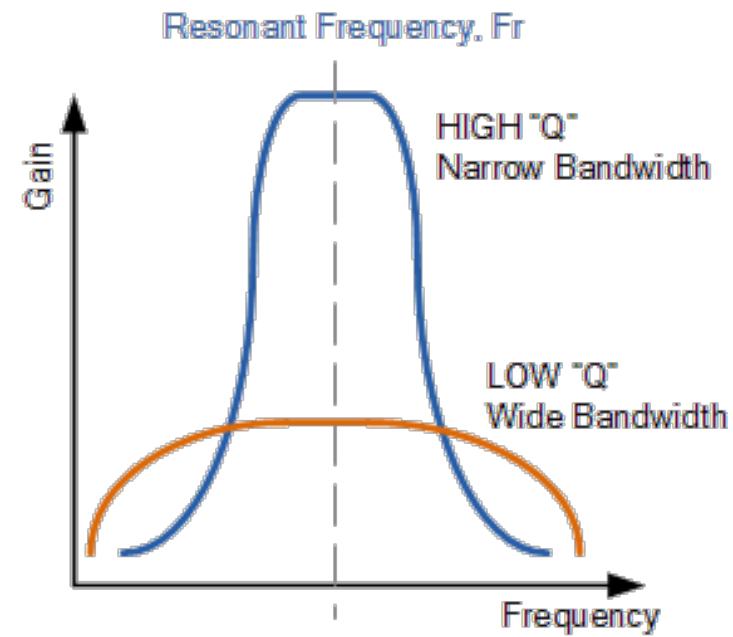
$$F(s) = K \frac{(s - \omega_c)}{(s + \omega_c)}$$

$$\log|G(j\omega)| = \log K$$

$$\varphi = -2 \arctan \left( \frac{\omega}{\omega_c} \right)$$

# Quality Factor

- Dimensionless parameter that describes how underdamped a resonator is
- The higher Q (the "Quality") is, the sharper the resonance is.
- Numerically, the Q-factor is the relation between center frequency and the -3 dB-bandwidth.

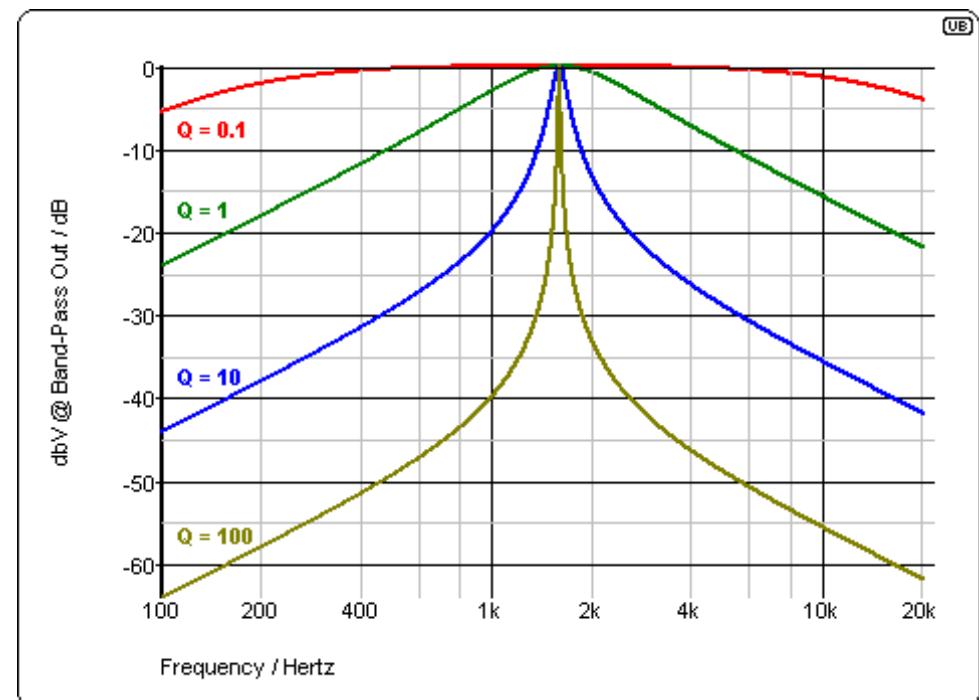


# High-Q Band-Pass Filter

- For small bandwidth ( $\omega_H - \omega_L$ ) and high quality factor (Q), poles must be complex

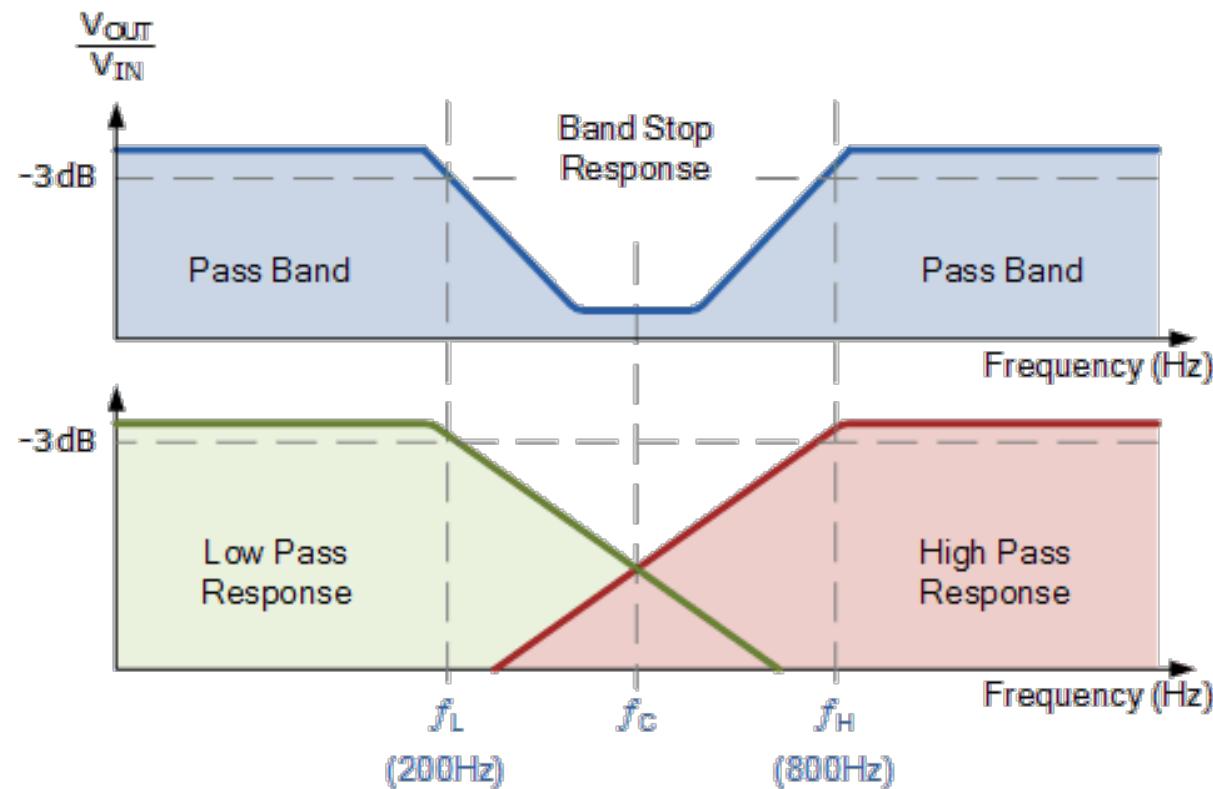
$$F(s) = K \frac{s \frac{\omega_c}{Q}}{s^2 + s \frac{\omega_c}{Q} + \omega_c^2}$$

$$\varphi = 90^\circ - \arctan\left(\frac{1}{Q} \frac{\omega \omega_c}{\omega_c^2 - \omega^2}\right)$$



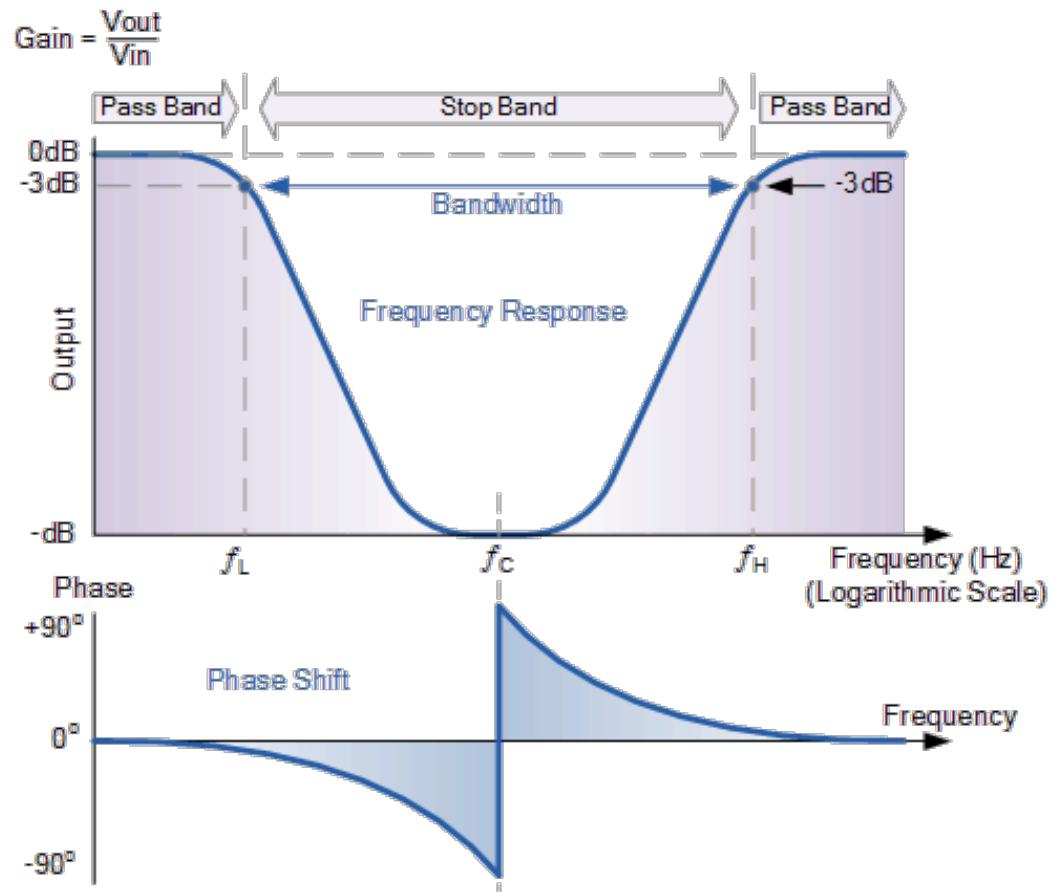
# Band-Stop Filter

---

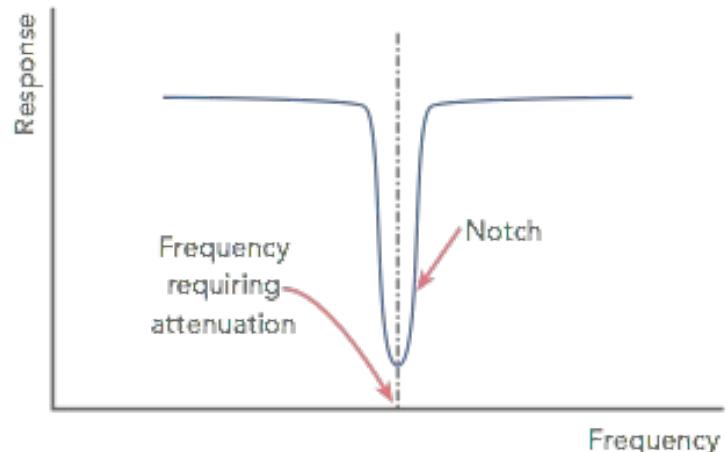


# Band-Stop Filter

- Notch filter is high-Q band stop filter



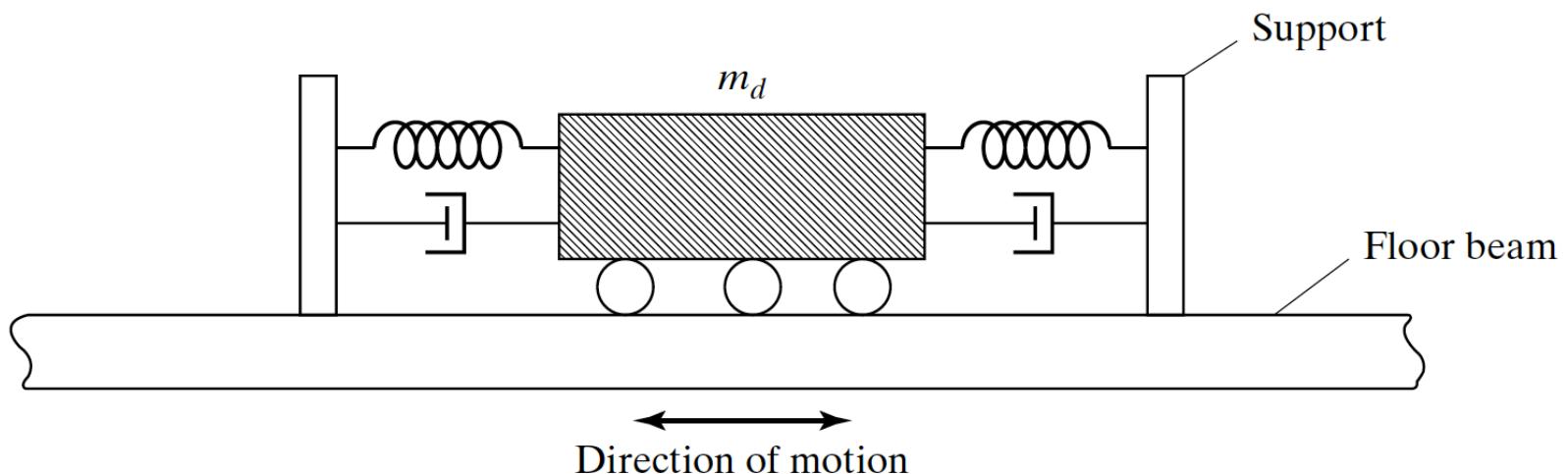
$$F(s) = K \frac{s^2 + \omega_c^2}{s^2 + s \frac{\omega_c}{Q} + \omega_c^2}$$



# Vibration Absorber

---

- Tuned spring-mass-damper system which reduces or eliminates the vibration of a harmonically excited system
- Rotating machines
- Tuned to oscillate in such a way that exactly counteracts the force from the rotating imbalance
- Energy dissipation



# Example

---

Consider a mechanical system described by the following differential equation. The system is initially at rest.

$$\ddot{y}(t) + \dot{y}(t) + y(t) = 2u(t)$$

- a) Find the transfer function  $G(s)$  of the system and sketch the Bode plot.
- b) We would like to design a first order filter  $F(s) = \frac{K}{\tau s + 1}$  in a way that the new system with the transfer function  $G'(s) = G(s) \times F(s)$  has magnitude  $|G'(j\omega)| = 1$  and phase angle  $\phi = -3\pi/4$  at frequency  $\omega = 1$ .

# Example

---

a) The transfer function can be calculated as:

$$G(s) = \frac{2}{s^2 + s + 1}$$

The second order term has a natural frequency of  $\omega_0 = 1\text{rad/sec}$ , the damping ratio is  $\zeta = 0.5$ , and the gain is 2. The resonance frequency is  $\omega_r = \omega_0\sqrt{1 - 2\zeta^2} = 0.707$ . The resonant peak is  $R(\omega_r) = \frac{2}{2\zeta\sqrt{1 - 2\zeta^2}} = 2.31$ .

## Example

---

b) The filtered system is given by:

$$G'(s) = \frac{K}{\tau s + 1} \frac{2}{s^2 + s + 1}$$

The magnitude of the sinusoidal transfer function at  $\omega = 1$  must be 1.

$$|G'(j\omega)| = \frac{2K}{\sqrt{\tau^2\omega^2 + 1} \sqrt{(1 - \omega^2)^2 + \omega^2}} \rightarrow |G(\omega = 1)| = \frac{2K}{\sqrt{1 + \tau^2}} = 1$$

And the phase angle of the sinusoidal transfer function at  $\omega = 1$  must be  $-3\pi/4$ .

$$\phi(\omega = 1) = -\pi/2 - \arctan(\tau) = -3\pi/4$$

As a result,  $\tau = 1$  and  $K = \sqrt{2}/2 = 0.707$ .