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Sinusoidal Transfer Function
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• For sinusoidal inputs

U

U

• First Order System • Second Order System



Second Order Systems
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• Resonant Frequency

• Frequency at which amplitude is a maximum

𝑑
𝑑𝜔

𝐺(𝑗𝑤) = 0 𝜔! = 𝜔" 1 − 2ζ# 0 ≤ ζ ≤ ⁄1 2

• As the damping ratio approaches zero, the resonant frequency 
approaches natural frequency.

• Resonant frequency is lower than damped natural frequency, which 
is exhibited in the transient response

• For                       there is no resonant peak, magnitude decreases 
monotonically with increasing frequency

• Step response is oscillatory but well-damped and hardly perceptible

0.707 < ζ



Second Order Systems
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• Magnitude of the Resonant Peak

𝑀! = 𝐺(𝑗𝑤) "#$ = 𝐺(𝑗𝜔!) =
𝐾

2ζ 1 − ζ%

𝜔! = 𝜔" 1 − 2ζ# 0 ≤ ζ ≤ ⁄1 2

• As the damping ratio approaches zero, the magnitude approaches 
infinity.



Bode Form of the Transfer Function
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• Components of transfer functions

• Break points (corner frequency)

2. (𝑗𝜔)$

3. (𝑗𝜔𝜏 + 1)±&

4.
𝑗𝜔
𝜔"

#
+ 2𝜁

𝑗𝜔
𝜔"

+ 1
±&

2. 𝜔' = ⁄1 𝜏
3. 𝜔' = 𝜔"

1. 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 (gain)



Lecture Overview
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• Higher order transfer functions and Delay
• Magnitude in Decibels
• Filter design



Bode Form of the Transfer Function
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• Manipulate transfer function into Bode form
• Extend the low frequency asymptote until the first break point. Then step the 

slope by ±1 or ±2, depending on whether the break point is from a first order or 
second order term in the numerator or denominator

• Continue through all break points in ascending order
• Approximate magnitude curve is increased from the asymptote value by a factor 

of 1.4 at first order numerator break point and decreased by a factor of 0.707 at 
first-order denominator break points

• At second-order break points, find resonant peak

• Plot low frequency asymptote of the phase curve 𝜑 = n x 90°
• Approximate phase curve changes by ±90° or ±180° at each break point in 

ascending order. Sign depends on location.
• Graphically add each phase curve



Higher Order Systems
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Higher Order Systems
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𝑠𝑙𝑜𝑝𝑒 = −3

𝑠𝑙𝑜𝑝𝑒 = −2

𝑠𝑙𝑜𝑝𝑒 = −1



Higher Order Systems
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Correction for Phase Angle
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𝐺 𝑠 = 10
(𝑠 + 100)
(𝑠 + 1)



Systems with Zeros

12

1 + 2𝜔 #

1 + 5𝜔 #

1 + −2𝜔 #

1 + 5𝜔 #



Systems with Zeros
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𝑠𝑙𝑜𝑝𝑒 = 1

𝑠𝑙𝑜𝑝𝑒 = −1



Systems with Zeros
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Systems with Zeros
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1 + 2𝜔 #

1 + 5𝜔 #

1 + 5𝜔 #

1 + 2𝜔 #

𝐺% 𝑠 =
5𝑠 + 1
2𝑠 + 1

+



Non-minimum phase zeros
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• Minimum phase systems are with 
• Transfer functions having neither poles nor zeros in the right-half s-

plane
• Non-minimum phase systems have 

• Transfer functions with poles and/or zeros in the right-half s-plane

• Poles with positive real part result in unstable system (the output diverges 
over time)

• The stability of the system is preserved when zeros have positive real part
• A zero in the right half plane means a negative derivative action – the 

output will tend to move in the wrong direction initially
• Nonminimum phase zeros make the system slow in response because 

of the faulty behavior at the start of the response
• Excessive phase lag should be avoided



Non-minimum phase zeros
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Systems with Delay
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Time Delay



Systems with Delay
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Systems with Delay
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Example

21

𝑠𝑙𝑜𝑝𝑒 = −1
𝑠𝑙𝑜𝑝𝑒 = 0

𝑠𝑙𝑜𝑝𝑒 = −1
𝑠𝑙𝑜𝑝𝑒 = −2



Systems with Delay
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Bode Form of the Transfer Function
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• Components of transfer functions

• Break points (corner frequency)

2. (𝑗𝜔)$

3. (𝑗𝜔𝜏 + 1)±&

4.
𝑗𝜔
𝜔"

#
+ 2𝜁

𝑗𝜔
𝜔"

+ 1
±&

2. 𝜔' = ⁄1 𝜏
3. 𝜔' = 𝜔"

1. 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 (gain)

5. 𝑒()*+ (delay)

• Bandwidth and Cut-off frequency



Decibel (power dB)
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• In communications, it is standard to measure the power gain in decibels (dB)
• Decibels vs log(w) as a semi log plot

𝐺(𝑗𝜔) &' = 20𝑙𝑜𝑔() 𝐺(𝑗𝜔)
Magnitude in dB



Performance Specifications
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• Speed of transient response
• As bandwidth increases, the rise time of the step response will 

decrease
• Bandwidth is proportional to the speed of the response

• As resonant peak increases in magnitude, the percent overshoot increases



Filter Design
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• The objective is to modify certain characteristics of system response
• Magnitude and phase at a certain frequency
• Low-pass filter: cut unwanted high-frequency components
• High-pass filter: cut unwanted low-frequency components
• Band-pass and notch filter: attenuate specific frequencies
• All-pass filter (phasor effect): only change phase

G(s) F(s)
U(s) Y(s) 



Low-Pass Filter (or Amplifier)
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• Amplifies signals below a cut-off frequency, including DC gain
• ωH = upper cutoff frequency

𝐹 𝑠 = 𝐾
𝜔#

(𝑠 + 𝜔#)

R

CUin Uout

𝜑 = −arctan(
𝜔
𝜔*

)



Low-Pass Filter (or Amplifier)
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• Amplifies signals below a cut-off frequency, including DC gain
• ωH = upper cutoff frequency

𝐹 𝑠 = 𝐾
𝜔#

(𝑠 + 𝜔#)

𝜑 = −arctan(
𝜔
𝜔*

)



High-Pass Filter (or Amplifier)
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• A single pole with a zero at the origin
• ωL = lower cutoff frequency

𝐹 𝑠 = 𝐾
𝑠

(𝑠 + 𝜔$)

R

LUin Uout

𝜑 = 90° − arctan(
𝜔
𝜔+
)



High-Pass Filter (or Amplifier)
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• A single pole with a zero at the origin
• ωL = lower cutoff frequency

𝐹 𝑠 = 𝐾
𝑠

(𝑠 + 𝜔$)

𝜑 = 90° − arctan(
𝜔
𝜔+
)



High-Q Band-Pass Amplifier and Notch Filter
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• Band-pass: Combination of high-pass and low-pass characteristics

𝐹 𝑠 = 𝐾
𝑠𝜔#

(𝑠 + 𝜔$)(𝑠 + 𝜔#)

• For small bandwidth (ωH - ωL) and high quality factor (Q), poles must be 
complex

𝐹 𝑠 = 𝐾
𝑠𝜔%𝑄

𝑠& + 𝑠𝜔%𝑄 + 𝜔%&

• Band rejection (Notch) filter

𝐹 𝑠 = 𝐾
𝑠& +𝜔%&

𝑠& + 𝑠𝜔%𝑄 + 𝜔%&

𝜑 = 90° − arctan(
1
𝑄

𝜔𝜔,
𝜔,# − 𝜔#

)



Band-Pass Filter
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• Band-pass: Combination of high-pass and low-pass characteristics

𝐹 𝑠 = 𝐾
𝑠𝜔#

(𝑠 + 𝜔$)(𝑠 + 𝜔#)



Band-Pass Filter
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• Band-pass: Combination of high-pass and low-pass characteristics

𝐹 𝑠 = 𝐾
𝑠𝜔#

(𝑠 + 𝜔$)(𝑠 + 𝜔#)



All-pass Function
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• Uniform magnitude response at all frequencies
• Can be used to tailor phase characteristics of the system

𝐹 𝑠 = 𝐾
(𝑠 − 𝜔%)
(𝑠 + 𝜔%)

log 𝐺(𝑗𝜔) = log𝐾

𝜑 = −2𝑎𝑟𝑐𝑡𝑎𝑛
𝜔
𝜔,



Quality Factor
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• Dimensionless parameter that describes how underdamped a resonator is
• The higher Q (the "Quality") is, the sharper the resonance is. 
• Numerically, the Q-factor is the relation between center frequency and the -

3 dB-bandwidth. 



High-Q Band-Pass Filter
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• For small bandwidth (ωH - ωL) and high quality factor (Q), poles must be 
complex

𝐹 𝑠 = 𝐾
𝑠𝜔%𝑄

𝑠& + 𝑠𝜔%𝑄 + 𝜔%&

𝜑 = 90° − arctan(
1
𝑄

𝜔𝜔,
𝜔,# − 𝜔#

)



Band-Stop Filter
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Band-Stop Filter
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• Notch filter is high-Q band stop filter
𝐹 𝑠 = 𝐾

𝑠& +𝜔%&

𝑠& + 𝑠𝜔%𝑄 + 𝜔%&



Vibration Absorber
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• Tuned spring-mass-damper system which reduces or eliminates the 
vibration of a harmonically excited system

• Rotating machines
• Tuned to oscillate in such a way that exactly counteracts the force 

from the rotating imbalance 
• Energy dissipation



Example
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Ecole Polytechnique Federale de Lausanne Spring 2020

Problem 3

Sketch the Bode plot (magnitude and phase) of the following systems.

a) G(s) =
2se�s

s2 + 3s+ 2

b) G(s) =
s+ 100

s(s+ 20)(s2 + s+ 1)

Problem 4

Consider a mechanical system described by the following di↵erential equation. The system

is initially at rest.

ÿ(t) + ẏ(t) + y(t) = 2u(t)

a) Find the transfer function G(s) of the system and sketch the Bode plot.

b) We would like to design a first order filter F (s) =
K

⌧s+ 1
in a way that the new system

with the transfer function G0
(s) = G(s)⇥F (s) has magnitude |G0

(j!)| = 1 and phase angle

� = �3⇡/4 at frequency ! = 1.

Problem 5

Consider the system described by the following transfer function.

G(s) =
6

(s+ 1)2(s+ 2)

Sketch the Bode diagram first and use the magnitude and phase information to sketch

the Nyquist plot.
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Example
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Ecole Polytechnique Federale de Lausanne Spring 2019

Problem 4

a) The transfer function can be calculated as:

G(s) =
2

s2 + s+ 1

The second order term has a natural frequency of !0 = 1rad/sec, the damping ratio is
⇣ = 0.5, and the gain is 2. The resonance frequency is !r = !0

p
1� 2⇣2 = 0.707. The

resonant peak is R(!r) =
2

2⇣
p

1� 2⇣2
= 2.31.

b) The filtered system is given by:

G0(s) =
K

⌧s+ 1

2

s2 + s+ 1

The magnitude of the sinusoidal transfer function at ! = 1 must be 1.

|G0(j!)| = 2Kp
⌧ 2!2 + 1

p
(1� !2)2 + !2

! |G(! = 1)| = 2Kp
1 + ⌧ 2

= 1

And the phase angle of the sinusoidal transfer function at ! = 1 must be �3⇡/4.

�(! = 1) = �⇡/2� arctan(⌧) = �3⇡/4

As a result, ⌧ = 1 and K =
p
2/2 = 0.707.

Problem 5

The transfer function is given by

G(s) =
6

(s+ 1)2(s+ 2)

We have a repeated pole at �1 and a pole at �2. We first sketch the Bode plot of this
system.
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