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Sinusoidal Transfer Function

* For sinusoidal inputs

G(jw) = |G(jw)|e’

Y(jw)
U(jw)

G(jw)| = |

_ amplitude ratio of the output sinuisoid to the
input sinusoid

.+ /Y(jo) _ phase shift of the output sinusoid with respect
Gjw) = /U(ja)) ~ to the input sinusoid

* First Order System
K

J1 + 2
/G(jow) = @ = —arctan(Tw)

G(jw)| =

* Second Order System

|G(jo)| = JR2+1?

[Gj®) = ¢ =

arc tan(i) R>0
R

arctan(l—le) + 7 R<Z(
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Second Order Systems

* Resonant Frequency

* Frequency at which amplitude is a maximum
d
%|G(]'W)|=() W= w1 —-22 0<C<1/V2

* Asthe damping ratio approaches zero, the resonant frequency
approaches natural frequency.

* Resonant frequency is lower than damped natural frequency, which
Is exhibited in the transient response

e For 0.707 < ¢ there is no resonant peak, magnitude decreases
monotonically with increasing frequency
* Step response is oscillatory but well-damped and hardly perceptible




Second Order Systems

* Magnitude of the Resonant Peak

Wy =wo1—22  0<C<1/2

M, = |G(GW)|max = |G(w,)| =

K
201 — %

Jl——z@)
¢

* As the damping ratio approaches zero, the magnitude approaches
Infinity.

—arctan(

[G(jo) = ¢(@,)




Bode Form of the Transfer Function

* Components of transfer functions

1. constants (gain) jw\* jw

4. [(—) +20% 41
2.(jw)™ Wo Wo
3.(jot + 1)*!

* Break points [corner frequency]

Z.Cl)b — 1/T

3. Wy = Wy




| ecture Overview

* Higher order transfer functions and Delay
* Magnitude in Decibels
* Filter design




Bode Form of the Transfer Function

* Manipulate transfer function into Bode form

* Extend the low frequency asymptote until the first break point. Then step the
slope by =1 or £2, depending on whether the break point is from a first order or
second order term in the numerator or denominator

* Continue through all break points in ascending order

* Approximate magnitude curve is increased from the asymptote value by a factor
of 1.4 at first order numerator break point and decreased by a factor of 0.707 at
first-order denominator break points

* At second-order break points, find resonant peak

* Plot low frequency asymptote of the phase curve ¢ = n x 90°

* Approximate phase curve changes by #30° or £180° at each break point in
ascending order. Sign depends on location.

* (Graphically add each phase curve




Higher Order Systems

_ 3
C (10s+ D(2s+ 1)(0,1s + 1)

G(s)

3

G(jo)| =
J1+(100)2J1 + 20)24J1 + (0,1 w)2

¢ = arg|G(jw)] = —arctan(10w) — arctan(2 w) — arctan (0,1 w)




Higher Order Systems
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Higher Order Systems
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Correction for Phase Angle

(s +100)
(s+1)

G(s) = 10

Phase, degrees

1072 107" 1 10 102 10° 10*
Frequency w [rad/s]

11



Systems with Zeros

_2s+1 _ - 25+ 1

Ci9) =50 “20) = 5
2 _ 2
Gy = VAT Gy = YL (20)
J1+ (5w)? J1+ (5w)?

@, = arctan(2m) — arctan(5 ) ¢, = —arctan(2®) — arctan(5 @)
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Systems with Zeros
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Systems with Zeros

45
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Systems with Zeros

25+ 1 5s +1
G — —
1(5) 5ot 1 G, (s) 25 + 1
Gliw)| = J1+ Qw)? Gljo)| = J1+ (5w)?
J1+ (5w)? J1+ Qw)?
@, = arctan(2m) — arctan(5 ) ¢, = —arctan(2w) + arctan(S @)

N\ /
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Non-minimum phase zeros

Minimum phase systems are with
* Transfer functions having neither poles nor zeros in the right-half s-
plane
* Non-minimum phase systems have
* Transfer functions with poles and/or zeros in the right-half s-plane

* Poles with positive real part result in unstable system (the output diverges
over time)
* The stability of the system is preserved when zeros have positive real part
* A zero in the right half plane means a negative derivative action - the
output will tend to move in the wrong direction initially
* Nonminimum phase zeros make the system slow in response because
of the faulty behavior at the start of the response
* Excessive phase lag should be avoided
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Non-minimum phase zeros
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Systems with Delay

u(t)

y(t) = u(t—-0) —=p

. y(t) = u(t-6)
Time Delay .
L o Y(s) = exp(—6s)U(s)
G(s) = UY_((% = exp(—65)

|G(jw)l =lexp(—j0w)| = 1

¢ = arglexp(-j0w)] = —6w




Systems with Delay

|G(jo)
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Systems with Delay
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Example

G(s) = 2EFDeDD)  [G(jw)| =2 —
(10s + 1)(2s + 1) J1+(10w)2J/1 + (2w)2
|G(jw)
10
2
I I
0.1 i
0.01 i
1,
0.001 10,' , —>
0.01 0.1 1 10 rad/s]
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Systems with Delay

_ 2(s+1)exp(=s)
e TS e TR

¢ A = — w + arctan(w) — arctan(10w) — arctan(2 w)
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Bode Form of the Transfer Function

* Components of transfer functions

. +1
. W W

1. constants (gain) " [(J_) + 251_ n 1]

2. (]w)n Wy Wy

3. (jwt + 1) 5.e77/2% [delay)

* Break points [corner frequency)

2.(1)b — 1/T

3. Wy = Wy

» Bandwidth and Cut-off frequency
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Magnitude |H|, dB

Decibel (power dB]

* In communications, it is standard to measure the power gain in decibels (dB]
* Decibels vs log(w) as a semi log plot

Magnitude in dB
|G(jw)|ag = 20log,0|G(jw)]

10

Break pointat w =1 40 -
0dB é
0 30+
TN 3 H(s)=(s+1)
-10} Slope: -20 dB/dec T 9l +20log,, @
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S +1 _2010g10 @ g OdB 7. +3dB
-30¢ ot {
Break pointat w =1
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Performance Specifications

* Speed of transient response

* As bandwidth increases, the rise time of the step response will
decrease

* Bandwidth is proportional to the speed of the response
* As resonant peak increases in magnitude, the percent overshoot increases

I

|

/\ Resonant peak, M,
l

07 |————— — e e e A e e L L

|
§
!
0.1 ;
§

- BandWldth, Wpw ——_’i

w (rad/sec)
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Filter Design

* The objective is to maodify certain characteristics of system response

* Magnitude and phase at a certain frequency

* Low-pass filter: cut unwanted high-frequency components
* High-pass filter: cut unwanted low-frequency components
* Band-pass and notch filter: attenuate specific frequencies
* All-pass filter (phasor effect): only change phase

U(s)

G(s)

Hs]

Y(s])
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Low-Pass Filter (or Amplifier]

Amplifies signals below a cut-off frequency, including DC gain
wy = upper cutoff frequency

F(s) =K ©H Q= —arctan(g)
)= (s + wy) WH

1

Uin C = out

O

27



Low-Pass Filter (or Amplifier]

F(s) = K —H

(S + C()H)

tan(—)
= —arctan(—
¢ on

Amplifies signals below a cut-off frequency, including DC gain
wy = upper cutoff frequency

(Logarithmic Scale)

Corner
F
_ Vout requency
Gain =20 log Vin fc
{ PassBand ) | | Stop Band )
v v
0dB
-3dB —_—— —
Frequency
- Response ‘
a
S
S |
Bandwidth
- |
Phase fc(p)  Freguency (Hz)
0° |

-45°

-90°

Frequency (Hz)
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High-Pass Filter (or Amplifier]

* A single pole with a zero at the origin
* w, = lower cutoff frequency

F(s) = K
(s) (5 + @)
R
O
Uin L Uout

w
@ = 90° — arctan(—)
Wy,
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High-Pass Filter (or Amplifier]

A single pole with a zero at the origin
w, = lower cutoff frequency

S Gain (dB) = 20 log \</°|_;]“
F(S)=K( o) N
S ) L _SWBW_“} “ Pass Band
OdBrﬁﬁ—fé:f : ‘
o | -3dB (457 Frequency
Response
@ = 90° — arctan(—) §
Cl)L é Slope =
a | +20dB/Decade
Bandwidth

>

Frequency (Hz)
(Logarithmic Scale)

+45°

Frequency (Hz)
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High-Q Band-Pass Amplifier and Notch Filter

* Band-pass: Combination of high-pass and low-pass characteristics
SWy

Fs) =K 5+ 0)(5 + 0n)

* For small bandwidth [wy - w ] and high quality factor [(Q), poles must be
complex W,

S —
Q 1 ww,
F(S) =K @ = 90° — arctan(— )
0} 2 _ 2
s2 + 5= + w2 Qe —w
0 c
* Band rejection (Notch] filter
2 2
S+ w
F(s) =K <

w
§%+ 5=+ w?

Q
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Band-Pass Filter

* Band-pass: Combination of high-pass and low-pass characteristics

F( ) K SWy
S) =
(S + G)L)(S + G)H)
High Pass Low Pass Band Pass
-3dB |-+ 0dB
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Band-Pass Filter

* Band-pass: Combination of high-pass and low-pass characteristics

SWy

FS) =K TG on

_ Vout

-90°

T

Gain=vi  fe fe
f-‘ I
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All-pass Function

* Uniform magnitude response at all frequencies
* (an be used to tailor phase characteristics of the system

(s — w¢)

Fls) =K Tan

log|G(jw)| =logK

w

()
0, arctan o
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Quality Factor

Dimensionless parameter that describes how underdamped a resonator is
The higher Q [the "Quality") is, the sharper the resonance is.

Numerically, the Q-factor is the relation between center frequency and the -
3 dB-bandwidth.

Resonant Frequency, Fr
'} | q y

A A -\ HiGHQ"

= Narrow Bandwidth

9.0 & ‘
i I Bandwidth ‘
& |
é 1 Leval : ‘
E = ' Frequency / | LQW @ :
c : ] Wide Bandwidth

|
s / | J |
ndi ke ' | - ’
Frequency (Hz) |
' Frequency
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High-Q Band-Pass Filter

* For small bandwidth [wy - w ] and high quality factor (4], poles must be

complex )
W D — /”7&'\ T

¢ Pc ) T —
F(s) = K—2 o VIS

S% 4+ 5=+ w? = NN

dbV @ Band-Pass Out / dB

Q -30
- NN
1 ww
@ = 90° — arctan(—

c
) _
Q w2 — w? %
¢ 0=1/ \\

B0

100 200 400 1k 2k 4k 10k

Frequency J/Hertz




Band-Stop Filter

Vour

Vin

‘ | Band Stop |
3dB b — — — — Response __ -

Pass Band

Lol
Frequency (Hz)

-3dB

High Pass
Response

JL
(200Hz)

(800Hz)

L o
Frequency (Hz)
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Band-Stop Filter

. . . . 2 2
* Notch filter is high-Q band stop filter F S° + w,
(s) =
2 We 2
Gain =\</o_ut S + S + (,()C
in Q
ass Band :ﬁ:"1 Stop Band P":j: ass Ba .
Y V| Vv — ¥ )
0dB | c E
5B Bandwidth g ;
L |
5 Frequency Response :
o : Notch
= Frequency : /
O requiring i
atte"uatio'\g
-dB >
fi fe fu  Frequency (He) Frequency
Phase (Logarithmic Scale)
+90°
Phase Shift
Frequency
0° >
-90°
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Vibration Absorber

* Tuned spring-mass-damper system which reduces or eliminates the
vibration of a harmonically excited system

* Rotating machines

* Tuned to oscillate in such a way that exactly counteracts the force
from the rotating imbalance

* Energy dissipation

Support

T T
H] ]

O_ OO
) )

A ——
Direction of motion

Floor beam
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Example

Consider a mechanical system described by the following differential equation. The system
is initially at rest.

§(t) + () +y(t) = 2u(t)

a) Find the transfer function G(s) of the system and sketch the Bode plot.
K

b) We would like to design a first order filter F'(s) = n
TS

with the transfer function G'(s) = G(s) x F(s) has magnitude |G'(jw)| = 1 and phase angle
¢ = —3m/4 at frequency w = 1.

in a way that the new system
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Example

a) The transfer function can be calculated as:

2
s24+s+1

The second order term has a natural frequency of wy = 1rad/sec, the damping ratio is

¢ = 0.5, and the gain is 2. The resonance frequency is w, = wyy/1 —2¢%2 = 0.707. The

2
resonant peak is R(w,) = = 2.31.

20/1— 2(2

G(s) =
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Example

b) The filtered system is given by:

K 2
s+ 1824541
The magnitude of the sinusoidal transfer function at w = 1 must be 1.

G'(s)

2K 2K

And the phase angle of the sinusoidal transfer function at w = 1 must be —37/4.

1

d(w=1)=—n/2 —arctan(t) = =37 /4
As aresult, 7 =1 and K = /2/2 = 0.707.
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